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Classical charged particles with spin 
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Abstract. A Lagrangian formulation for a relativistic classical spinning point particle 
interacting with the electromagnetic field is given. Although it meets all criteria usually 
imposed for this system, it is nevertheless unrealistic, in that the centres of mass and 
charge get separated in electromagnetic fields. It is suggested that unless special care is 
taken, the same can happen also in different treatments of the problem. 

With the development of supersymmetry, the venerable subject of classical spinning 
particles (Corben 1968, Barut 1964, Itzykson and Voros 1972, Souriau 1970) has also 
got a new impetus (Berezin and Marinov 1976, Collins and Tucker 1976, Barducci et 
af 1976, Brink et af 1977). Although the problem of classical relativistic spinning 
point particles in an electromagnetic field has at least 50 years of history (Frenkel 
1926, Thomas 1927), only the case of weak and homogeneous fields has been solved 
(Bargman e? af 1959, Barut 1964), but a fully satisfactory Lagrangian formalism does 
not exist. 

It is the purpose of this paper to present a Lagrangian not using supersymmetry, 
which yields in the limit of weak and homogeneous fields the Bargmann-Michel- 
Telegdi equations (Bargman e? af 1959). In general fields, however, it describes a 
rather curious particle, in which the centre of gravity and the centre of charge do not 
coincide, although the particle otherwise is pointlike. This happens not only when the 
particle traverses the field, but remains so even after it has passed through a strong 
field. 

It seems that this default is indeed common also to previous attempts, although 
none of these is sufficiently far developed to make it evident. 

Our action is (we use c = 1) 
t m  

W = d4x -iF,JF’” + d r  . L . a4(x - z (7 ) ) )  I (  I, 
with 

L=$m(l -u ,uC”)-eu,AF’(z )+f (b ,a”  - u c i , b L L ) + ~ a , b ~ “ L L ( z ) + u , ( p b ,  -aaF’) .  (2) 

Here, U ,  = dz,/dT = i,, and all quantities, except e and K but including the mass m, 
are functions of T. The first term in equation (2) is indeed a constraint added (with m 
as Lagrangian multiplier) to yield 

aL 2 2-=1-u =o .  
am (3) 

tEquipe de Recherche Associte au CNRS. 
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Similarly, a and p are multipliers whose variation guarantees that a,  and b, are 
orthogonal on U,,  

au = bu = 0. (4) 
Variation with respect to a ,  and b, gives finally 

a, = K F , ~  + @ U ,  

6, = KF,,b + au,. 

Spin is described by the antisymmetric tensor 

S, ,  = a,b, - a,b, 

which by equation (4) is also orthogonal on U, 

s,,u = 0.  

Its proper time derivative is 

S , v  = K (F@aSau -FvaSa@)- U F T u  + U u T w ,  

with 

q, = aa, -Ob,. 

From this we see that 

s,s”” = 2 g 2  = constant, 

(7) 

so that the Lagrangian indeed describes a particle with a constant magnitude of spin. 
The equation of motion for the four-velocity is finally 

d 
-(mu, + 11,) = eF,,u” +$KS,,$~’,,. 
d r  

Except maybe for the term fi,, this is just what we expect for a particle with 
g = 2 m ~ / e .  Multiplying it with U,, we get 

m ( 7 )  = mo + ;K ), (12) 

u,q@ = 0 (13) 

where the constant mo is the mass in field-free regions;and where we have used 

together with equations (4) and (5). The fact that the effective particle mass acquires a 
term proportional to (S , F) is indeed well known (Corben 1968, Barut 1964).t 

A further constraint on 17 is obtained by taking the derivative of equation (7): 

mq, -~, , , f i ”  = (mK -e)Sr,FY(Iu, - $ K S , J , ~ ~ ’ ~ ~ .  (14) 
For a weak homogeneous field F,,, and for K = e/mo (corresponding to g = 2), this has 
the special solution q = 0, yielding the well known result that four-velocity and spin 
rotate with the same ‘angular velocity’ e/mF,,. For the following discussion it is 
useful to introduce the Pauli-Lubanski spin vector 

with S 2  = -m2.  (15) s =’ , p a  , 2E,,U s 9 

tNotice that in Barut (1964) the roles of m and mo are interchanged. In an alternative formulation, one 
might demand K ( T ) =  eg/2m(~) .  Then, one would get m(T)= mo=constant, but U’= 1 +(eg/2mZ)S,JF’””. 
The problems to be discussed later would persist. 



Classical charged particles with spin 1223 

Its 7-derivative is found to be 

the first terms of which are just the BMT-equation (Bargman er a1 1959). It is 
orthogonal both on U and on 77, 

s,uw = 0, 

S,qW = 0, 

the latter following from equations ( 6 )  and (9).  
Summarising we see that we can forget about the auxiliary fields a,, b,, a and p. 

The particle is complete1 described by its position z and the vierbein t U, = i,, 

evolution equations of z ,  U, and S are explicit, equation (14)  for 77 (and thus also the 
equation for r )  is only implicit. Fortunately, however, the projections of 77 on each of 
the vectors of the vierbein can be computed from equations (14 )  and (1 l), yielding the 
rather lengthy result 

9, S , / m ,  i,, q,/ f i  - q and t, = E , , ~ u ~ & ’ < ~  = S , , $ / e .  While the 

4, = K U ,  (U,FUP?7s) - K g ,  ($,Fu8778) - G,  [ (e - Km)rj,FPVU, + t K S , ~ a S ’ v < v ]  

-t,[(e - Km)t,FPvU, + ~ K s , ~ ~ ~ ” ’ ~ , ]  + mSWv77 .Is2. (19 )  

Up to now, our results perhaps looked somewhat complicated (but this was to be 
expected), but quite reasonable. The blow comes when we consider the passage of our 
particle through a space-time region where F,, f 0, with F,, = 0 outside this region. 
Even if 77, + 0 for 7 + -CO, equation (19)  leads in general to 7, # 0 for the outgoing 
particle. 

This is most easily seen by looking at the norm of 77, whose derivative is not a total 
derivative of a function of z ,  U, S, and F :  

After leaving the field, 77 keeps its length and rotates, according to 

with an angular velocity m l d a ’ ,  around the spin axis. As a result, U, # constant even 
after the particle has left the field behind it! (This might be changed by radiation 
damping, but it also seems unacceptable that a point particle radiates after it has 
passed an external field.) In contrast, what is constant for F,, = 0 is the canonical 
momentum 

aL 
au ~ 

p , = - = -  (mu, + 77, + eA, ) ,  (22)  

tWe might mention that S,, = E , , $ ~ ~ u ~  
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and the position z @ ( T )  spirals along the straight line 

7 
= -p,  +constant. 

(For F = O )  m 

It is tempting to interpret X,(T)  as the centre-of-mass position of the particle, 

(The fact that the charge distribution is pointlike is most easily seen from the 
while z,(T) by construction is the position of the (point-like) charge. 

current 

This is supported by the observation that S, ,  is not constant either. The constant (for 
F = 0) spin tensor is 

X,” = s ,U - [(X, - z ,  )PY - (X” - Z” )PFL (25) 

where the term in the square bracket is obviously the orbital angular momentum 
around the point z .  

The difference between centre-of-mass z and centre-of-charge X could arise since 
we had imposed no constraint forcing them to be identical, while we had at the same 
time auxiliary variables a,, b,, (Y and /3 which are not completely eliminated. (We 
should mention that the non-relativistic limit is free of these diseases. In this limit, we 
take account of the constraints Q,U” = b,u& = 0 by considering a. and bo as dependent 
variables a. = a .  u / c ,  bo= b .  u /c .  After restoring factors of c, we arrive at the 
Lagrangian, correct including order v/c, 

m 2  e 0 

2 c 2 mc C 
Lnr =-U - e 4  +-U. A + + ( b .  U - 6 ,  a ) +  (a x b ) [ E (  B -- x 

The last contribution, resulting from the term t(doa0 - &bo) in equation (2), is the 
famous Thomas term. It can be neglected in the equation of motion for U, but not in 
the equation for the spin S = a  x b.)  

Our crucial observation is that none of the previous treatments (Corben 1968, 
Barut 1964, Itzykson and Voros 1972, Souriau 1970) imposed this constraint either, 
though they also used auxiliary variables?. So we cannot exclude a similar paradox in 
these theories as well. In that of Barut (1964) it definitely does occur, since our model 
is just a specific realisation of the general class of models discussed there. For the 
other treatments, the situation is less clear. In Itzykson and Voros (1972), e.g., no 
attempt was made to check the consistency of the constraints (3) and (7), and in our 
model it was just these constraints which forced us to introduce auxiliary variables in 
the form of Lagrangian multipliers. Anyhow, none of the above models has been 
developed far enough that the above paradox could have been seen. 

That the centres of mass and charge do not necessarily coincide for spinning 
particles is indeed well known (Corben 1968). However, the fact that X ,  = z ,  is a 
particular solution in field-free regions seems to have misled many authors to believe 
that X ,  # z ,  appears only in external fields. There, it would not be disturbing. What 
t That this excess of numbers of variables over the numbers of degrees of freedom is the source of troubles 
with classical (and quantised!) spinning particles was stressed by Souriau (1966) and Bacry (1967, 1976). 
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we think is disturbing and unnoticed before, is the observation that X, = z ,  is in 
general impossible before and after passage through a field, at least in our particular 
model. 

The most straightforward way to guarantee that the centres of mass and charge 
coincide would consist in treating particles coupled to electromagnetic and gravita- 
tional fields. We expect that weak gravitation fields are coupled to an energy- 
momentum tensor 

cm 

~ , , , ( x ) =  J d.r[mu,uu+$(u,S,du + U S , ~ ~ ~ ) I S ~ ( X  -z(T))+ T $ ( x ) ,  (26) 
-m 

(where el stands for electromagnetic) which should be conserved when neglecting 
gravitation. This is not the case in our model. There, the generators of the PoincarC 
group are 

P, = mu, + 7, + P: 

M,, = Z,P, - ZYP, + s,, +MZY 

and 

(27) 

and one can verify explicitly that they are constants of the motion for the action given 
by equations (1) and (2). Attempts along this line have not yet been successful. 

Finally, let us make some comments about theories describing spin by Grassmann 
variables (Berezin and Marinov 1976, Collins and Tucker 1976, Barducci et al 1976, 
Brink et ai 1977). T'ere, one introduces a real Grassmann vector 6, which commutes 
with the coordinate z,, but anticommutes with itself, 

The spin tensor is 

S, ,  = cc it,[, (29) 

( S , 3  = 0 (no summation), (30) 

which by equation (28) is antisymmetric but which, also by equation (28), satisfies 

and S,S* = -a2 = 0. The physical interpretation of such theories is somewhat deli- 
cate. Presumably, one should interpret them as the limit h + 0 of theories where Sa h. 

If we neglect in the present formalism all terms quadratic in S, ,  we can choose 
7, = 0 ( S a B ) ,  and we also get a consistent and correct result, provided g = 2. The 
advantage of using Grassmann variables is then seen to be a rather formal one: it 
allows one in a mathematically rigorous manner to avoid the conclusion that S = 0 if 
S2 = 0. This advantage can be very crucial when studying problems like quantisation 
(Barducci et a1 1976) or radiation reaction. Nevertheless, the question whether it is 
possible to construct an acceptable theory of charged classical point particles with 
macroscopic spin remains open. This might be related to the fact that no consistent 
(renormalisable) quantum theory of charged particles with arbitrary spin greater than 
h is known, since the classical theory would be the limit of the quantum theory when 
h + 0 and S/h + 00. The failure of all attempts in this direction might indicate a failure 
of the dogma that structureless particles (or fields) with arbitrary spin exist. 
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